Exercise 11

A machinist is required to manufacture a circular metal disk with area $1000 \mathrm{~cm}^{2}$.
(a) What radius produces such a disk?
(b) If the machinist is allowed an error tolerance of $\pm 5 \mathrm{~cm}^{2}$ in the area of the disk, how close to the ideal radius in part (a) must the machinist control the radius?
(c) In terms of the ε, δ definition of $\lim _{x \rightarrow a} f(x)=L$, what is x ? What is $f(x)$? What is a ? What is L ? What value of ε is given? What is the corresponding value of δ ?

Solution

Part (a)
The formula relating the area of a circle with its radius is

$$
A=\pi r^{2}
$$

Set $A=1000$ and solve for r.

$$
\begin{gathered}
1000=\pi r^{2} \\
\frac{1000}{\pi}=r^{2} \\
r=\sqrt{\frac{1000}{\pi}} \approx 17.84 \mathrm{~cm}
\end{gathered}
$$

Part (b)

With an error tolerance of $\pm 5 \mathrm{~cm}^{2}$, there are upper and lower bounds for the area.
Lower Bound: $1000-5=995 \mathrm{~cm}^{2}$
Upper Bound: $1000+5=1005 \mathrm{~cm}^{2}$
Determine the radii corresponding to these areas.

$$
\begin{array}{rll}
995=\pi r_{l}^{2} & \Rightarrow & r_{l}=\sqrt{\frac{995}{\pi}} \approx 17.80 \mathrm{~cm} \\
1005=\pi r_{u}^{2} & \Rightarrow & r_{u}=\sqrt{\frac{1005}{\pi}} \approx 17.89 \mathrm{~cm}
\end{array}
$$

Therefore, the error tolerance for the radius of the disk is

$$
\pm \frac{r_{u}-r_{l}}{2}= \pm \frac{1}{2}\left(\sqrt{\frac{1005}{\pi}}-\sqrt{\frac{995}{\pi}}\right) \approx \pm 0.0446 \mathrm{~cm}
$$

Part (c)

In terms of the ε, δ definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

x is the radius $r, f(x)$ is the area $A(r), a$ is the ideal radius $\sqrt{1000 / \pi}$ corresponding to the desired $1000 \mathrm{~cm}^{2}$ area, L is the desired area $1000 \mathrm{~cm}^{2}, \varepsilon$ is the provided error tolerance of $5 \mathrm{~cm}^{2}$ for the area, and δ is the error tolerance of about 0.0446 cm for the radius.

